|
| 1: |
|
minus(x,0) |
→ x |
| 2: |
|
minus(s(x),s(y)) |
→ minus(x,y) |
| 3: |
|
quot(0,s(y)) |
→ 0 |
| 4: |
|
quot(s(x),s(y)) |
→ s(quot(minus(x,y),s(y))) |
| 5: |
|
plus(0,y) |
→ y |
| 6: |
|
plus(s(x),y) |
→ s(plus(x,y)) |
| 7: |
|
plus(minus(x,s(0)),minus(y,s(s(z)))) |
→ plus(minus(y,s(s(z))),minus(x,s(0))) |
| 8: |
|
plus(plus(x,s(0)),plus(y,s(s(z)))) |
→ plus(plus(y,s(s(z))),plus(x,s(0))) |
|
There are 6 dependency pairs:
|
| 9: |
|
MINUS(s(x),s(y)) |
→ MINUS(x,y) |
| 10: |
|
QUOT(s(x),s(y)) |
→ QUOT(minus(x,y),s(y)) |
| 11: |
|
QUOT(s(x),s(y)) |
→ MINUS(x,y) |
| 12: |
|
PLUS(s(x),y) |
→ PLUS(x,y) |
| 13: |
|
PLUS(minus(x,s(0)),minus(y,s(s(z)))) |
→ PLUS(minus(y,s(s(z))),minus(x,s(0))) |
| 14: |
|
PLUS(plus(x,s(0)),plus(y,s(s(z)))) |
→ PLUS(plus(y,s(s(z))),plus(x,s(0))) |
|
The approximated dependency graph contains 3 SCCs:
{9},
{12-14}
and {10}.